
March 1998 The Delphi Magazine 29

Beating the System: Exploring
Delphi’s Closed-Tools API, 3
To Boldly Go...
by Dave Jewell

When I first contemplated
doing this mini-series on the

undocumented LibIntf unit, I did
have some reservations about how
useful readers would find it. Hap-
pily, my misgivings have been laid
to rest by the very positive feed-
back I’ve received via email. In par-
ticular, I was delighted when Mark
Miller (of Raptor/CodeRush fame)
told me that the first part of this
series had helped him to overcome
a registry-related problem in Code-
Rush. High praise indeed! It’s nice
to know that I’ve helped contribute
in some small way to what’s
already a great product.

The TIForm Class
In this final article, I’ll tie up some
of the loose ends of the LibIntfunit
by describing the TIForm class. As
the name suggests, TIForm is con-
cerned with the design-time forms
displayed by the IDE. Using the
TIForm class, you can not only
obtain a lot of information about
what’s on a particular form, but
you can also programmatically do
things like alter the name of the
form, change component tab
order, rename a form method and
so forth. As ever, you need to real-
ise that the LibIntf unit represents
the means by which the IDE itself
manipulates design-time forms,
and that the official Open Tools API
routines are, in the main, wrappers
which map down onto the LibIntf
classes below.

The interface declaration to the
TIForm class is shown in Listing 1.
Once again, you’re not meant to
compile this, it’s simply there to
show you the methods that are
available. The first point to make is
that I’ve stripped out the abstract
and virtual keywords from this
class for the sake of brevity. All the
methods shown are, of course,

➤ Listing 2

TIForm = class(TIFile)
protected
function GetDesigner:TFormDesigner;

public
procedure Align (Affect: TAffect);
procedure CreateComponent (Item: TICompClass);
function FindCompClass(const CompName:string): String;
function GetAncestorName: String;
function GetCompCount: Integer;
procedure GetDependentForms (Proc: TGetFormProc);
function GetDesignClassName: String;
procedure GetFormDependencies (Proc:TGetFormProc);
function GetNVComp (Index:integer): Pointer;
function GetCompInfo (Index: Integer): TICompInfo;
function GetModule: TIModule;
function GetCompName(Index: Integer): String;
function GetFileSystem: String;
function GetFormInterface: TIFormInterface;
function GetFormName: String;
function GetFormImage: Word;
procedure GetFormUnits (Proc: TGetStrProc);
function GetState: TFormState;
function GetTabCompCount: Integer;
function GetTabCompInfo(Index: Integer; var Name: String; var Comp: Pointer):
Boolean;

function GetObjectMenuItemCount: Integer;
function GetObjectMenuItem (Index: Integer): String;
procedure ObjectMenuAction (Index: Integer);
procedure Hide;
procedure GoDormant;
procedure RenameFormMethod (const CurName: String; const NewName : String);
procedure RemoveDependentLinks;
procedure Scale (Factor: Integer);
procedure SetFileSystem (const FileSystem: String);
procedure SetFormName (const AName: String);
procedure SetSelection (const Name: String);
procedure SetNVComp (Comp: Pointer; Order: Integer);
procedure SetTabCompOrder(Comp:pointer; Order: Integer);
procedure Show;
procedure ShowAs (ShowState: TShowState);
procedure Size (Affect: TSizeAffect; Value: Integer);

end;

➤ Listing 1

virtual methods. If they weren’t,
you wouldn’t be able to call them,
since the real code is lurking inside
the IDE and only calls through a
VMT will work.

The simplest way to get a TIForm
interface is to call the GetActive-
Form method of TILibrary. This will
give you a TIForm object instance
that corresponds to the current
active form. If no form is active,
then you’ll get Nil back. To ensure
that this doesn’t happen in my
expert, you’ll notice that I’ve added

a check to this month’s code such
that you can’t select the Form
Designer page of the expert unless
a form is active. I did this simply by
checking for an active form in the
InitFormDesignerPage method and
using this to allow or disallow the
page change (Listing 2).

Incidentally, if you’re thinking
that my little expert is becoming a
bit of a mess, I share your opinion!
This code evolved over the course

if NoteBook1.Pages [NewTab] = ‘Form Designer’ then
AllowChange := InitFormDesignerPage;

if not AllowChange then
Exit

else
NoteBook1.PageIndex := NewTab;

30 The Delphi Magazine Issue 31

of these three articles and could be
rewritten in a much more elegant
fashion. The object of the exercise
isn’t to create the world’s most
elegantly-written expert, but
rather to demonstrate some of the
more interesting classes and meth-
ods available through LibIntf.
You’ll notice, for example, that this
month I’ve entirely removed the
original functionality from the Form
Designer page and replaced it with
an interface that demonstrates the
TIForm interface.

One more point before we look at
TIForm in detail. Referring to Listing
1, you’ll see that the GetDesigner
method is a protected routine,
meaning that we can’t call it
directly to get the form designer
associated with the form. Quelle
horreur! In fact, this turns out not to
be a problem because TIForm has a
property called Designer which
isn’t shown in Listing 1. Once
you’ve got an object of type TIForm,
you can just access the Designer
property to get an object of type
TFormDesigner.

Note that if you call the ClassName
method on object instances of the
various classes defined in LibIntf,
(or indeed, many of the official
Open Tools classes) you’ll find that
the returned class name is rarely
what you’d expect it to be. That’s
because the abstract classes are
simply used as templates which
allow the compiler to call methods
of the real, ‘concrete’ classes
which reside in the IDE. As an
example, call ClassName on a TIForm
object, and you’ll get back a class-
name of TLibForm. Similarly, call
ClassName on the Designer property
of a TIForm and you’ll find that the
real class-name is TWindowDesigner.
TLibForm and TWindowDesigner are
real, non-abstract classes inside
the IDE and, for obvious reasons,
they respectively descend from
TIForm and TFormDesigner.

Right then, on with the show. As
with other parts of LibIntf, some of
the methods in TIForm return the
same information that can be
obtained by more orthodox
means. For example, the GetComp-
Count method will tell you how
many components are currently
installed on the form, and for each

➤ Figure 1: Here's the new Form Designer page, not to be confused
with the Form Designer page you saw in the first part of this series.
It demonstrates how to get the design-time image of a form,
interrogate the event information relating to all the controls on a
form, and much more.

component in the range 0..Get-
CompCount - 1 you can call the Get-
CompName method to give you the
name of a specific component. Be
sure not to call GetCompName if there
are no components on the form: if
you do, you’ll get an index out of
bounds exception.

Similarly, the GetFormName
method can be called to return the
name of the form associated with
the TIForm interface. You can
likewise call the GetAncestorName
routine to return the name of the
form’s immediate ancestor class.
Typically, this will be TForm unless
you’re using form inheritance.

Improving Your Image
A more interesting routine is Get-
FormImage. If you call this method,
you’ll get back an API-level bitmap
handle which contains a design-
time image of the form. You’re
probably aware that the plain-
vanilla TForm class has a GetForm-
Image method of its own, but of
course that particular method can
only give you a run-time image of a
form.

By contrast, the GetFormImage
method of TIForm will give you a
design-time image, complete with
design grid, assuming that you’ve
got the grid display turned on.
What you won’t see are any ‘grab
handles’ around selected compo-
nents, these don’t get included in
the bitmap and neither do any
non-visual components.

Being able to access the design-
time image of a form isn’t likely to
be much use in end-user software,
but after all, the whole point of the
LibIntf unit is that it lets us do
interesting things in Delphi
experts and property editors
which are written for other devel-
opers. Using GetFormImage, you
could potentially create fancy
Delphi tutorials or property edi-
tors which show the effect of
certain actions by retrieving the
image from a hidden form design
window.

As you’d expect, the GetFile-
System method returns the identi-
fying string for the file system
associated with the form. If the
default file system is being used,
then an empty string is returned.
Similarly, you can use the SetFile-
System method to associate a new
file system with a form. An excep-
tion will be thrown if you refer to a
file system that hasn’t previously
been registered. Because the IDE’s
representation of a design-time
form is held wholly in memory, you
can call SetFileSystem for a form
and then immediately use the new
file system to save the form.

Another interesting method is
GetTabCompCount. This returns the
number of components on the
form which happen to have a Tab-
Stop property, ie those compo-
nents which are descendants of
TWinControl. This method is used
by (for example) the IDE’s Tab

March 1998 The Delphi Magazine 31

Order dialog which allows you to
modify the tab order of
components on a form.

In a similar vein, you can use the
GetNVComp method to return a refer-
ence to a non-visual component
such as an open file dialog, a timer
or whatever. There are a few points
to make about the use of this
method. Firstly, there’s no method
which tells you how many non-
visual components are on the
form, so it’s natural to ask what
index values you pass to the Get-
NVComp. The answer is that you first
call GetCompCount to determine the
total number of components on the
form and you then call GetNVComp
for every possible component, ie
0..GetCompCount - 1. If the compo-
nent in question is not non-visual,
then GetNVComp will detect this
internally and give you back a Nil
result. Thus, if you wanted to fill a
listbox with non-visual component
names (as in the IDE’s Creation
Order dialog), you’d just loop
through all the possible compo-
nent indexes, adding an entry to
the list-box every time GetNVComp
returns non-Nil.

So what do you get back from
GetNVComp? For some odd reason,
this method is defined as returning
a pointer, although what you’re
actually getting is a reference to a
TComponent. Thus, you must cast it
to TComponent before you can do
anything sensible with it. Also,
bear in mind that, unlike the official
Open Tools API, the object refer-
ence you get back is an honest-to-
goodness component handle, it
isn’t a proxy object that’s been
manufactured for you and you
shouldn’t call Free on it.

Well, actually, you can call Free
on it, but if you do so, you’ll delete
the component from the form! It
should be obvious from this mini-
series that there are many ways in
which LibIntf gives you access to
the real components that the IDE
adds to a real form, in contrast to
the TWindowDesigner form which
masquerades as the real form at
design-time. Having got direct
access to a real component, you’ll
appreciate that it’s very easy to get
access to the real form itself
without going through the normal

contortions imposed by the Open
Tools API. The possibilities for
clever hackery are boundless!

Another component-fetching
routine is GetTabCompInfo. As the
name suggests, this fetches
information on tabbed compo-
nents and should only be used in
conjunction with GetTabCompCount.
Having determined how many
tabbed components are on the
form, you can access them by pass-
ing an index in the range
0..GetTabCompCount - 1. The rou-
tine will return Trueon success and
False on failure. If successful, the
var parameters will return the
name of the tabbed component
and (as with GetNVComp) an anony-
mous pointer which must be cast
to a TComponent (or at the very least,
a TObject) in order to identify the
type of component that’s being
dealt with.

Related to GetTabCompInfo is the
SetTabCompOrder routine. As the
name suggests, this routine alters
the tab order of the designated
component. As with some of the
other TIForm methods, it unac-
countably expects you to pass the
designated tabbed component as a
Pointer, so you must cast the first
parameter to a Pointer to keep the
compiler happy. Also, you should
take care when calling this routine
otherwise you will end up with sev-
eral tabbed components all having
the same tab order. The best
approach is to do what the IDE’s
Tab Order dialog does: build a
temporary list of all tabbed

➤ Figure 2:
So you want to
create your own,
souped-up Creation
Order dialog? Using
the information in
this article, you'll be
able to do that by
making use of the
GetNVComp and
SetNVComp methods

components, allow the user to
rearrange them as required, and
then call SetTabCompOrder for all
components in the list, updating
the order for everything in one go.

Bear in mind that there is noth-
ing ‘magic’ about the way that Set-
TabCompOrder works, it doesn’t do
much more than set the TabOrder
property of the designated compo-
nent. However, you shouldn’t try
doing the job yourself because
SetTabCompOrder also marks the
designer as modified, which is
important.

Similar arguments apply to the
SetNVComp method which can be
used to change the creation order
of non-visual components. Again,
this must be done ‘in one go.’
However, the situation is more
complex with SetNVComp because
LibIntf doesn’t contain a mecha-
nism allowing you to reference
non-visual components with a con-
tiguous set of indexes, you have to
perform the mapping yourself.

Beyond The Event Horizon...
A particularly interesting routine
is GetCompInfo, which takes an
index parameter in the range
0..GetCompCount. In return, it will
give you an object of type TIComp-
Info. In this particular case, the
TICompInfo object has been cre-
ated on your behalf and you must
delete it when you’ve finished
using it. The TICompInfo interface
opens up a whole new scenario,
the declaration for which is shown
in Listing 3.

32 The Delphi Magazine Issue 31

The GetClassName method of
TICompInfo is relatively boring and
simply returns the class name of
the associated component. In the
same way, the GetComponentHandle
function (which claims to return a
pointer) actually returns a TCompo-
nent handle for the component.
The other methods are more
interesting. Calling GetEventCount
will tell you how many event types
are defined for this component
type. Let me reiterate the point: it
tells you how many different types
of event handlers are defined for
this type of component. It does not
tell you how many event handlers
have actually been set up for this
specific component instance.

If you want to know what event
handlers are actually set up for the
component, then you can call the
badly named GetEventValue
method. What this method actu-
ally gives you is a string that
returns the name of an event

handler or an empty string if no
event handler has been estab-
lished.

Let’s take a simple example to
make this clearer. Suppose you’ve
got a TLabel control installed on
the form. If you select the control
and then use Object Inspector to
look at the defined events, you’ll
see that there are nine possible
event types for TLabel controls.

Sure enough, if you call GetEvent-
Count on the TICompInfo interface
for a TLabel component, then nine
is what you’ll get back. Now let’s
suppose that you’ve got an OnClick
handler set up for this particular
label component. You know there
are nine possible event types so
you call GetEventValue nine times
with an index in the range 0..8.
Eight of those times, you’ll get back
an empty string but one time you’ll
get back the name of your installed
event handler which might be
something like Label1Click.

In this way, you can determine
how many events are defined for
the component, how many event
handlers have been set up and
what their names are, as methods
of the form. But what if you want to
know the actual names of the event
types themselves, the parameters
taken by a specific event type, and
so forth? In other words, how can
you ‘discover’ programmatically
that the Label1Click handler
actually corresponds to the
OnClick event, and that this event
type takes a single parameter,
Sender, of type TObject? The
answer is to use the GetEventInfo
method. This takes an index
parameter (in the range 0..GetE-
ventCount - 1) and returns a
pointer to the TPropInfo data struc-
ture associated with this event.
This encodes not only the name of
the event (OnClick, OnCloseQuery,
etc, but also any parameters and
their types).

It’s best to think of the Index
parameter to GetEventInfo and
GetEventValue as a scalar type
which defines a particular event.
Having determined that an event

TICompInfo = class (TInterface)
public
procedure ClearEvent (Index: Integer);
function GetClassName: String;
function GetEventCount: Integer;
function GetEventInfo (Index: Integer): PPropInfo;
function GetEventValue (Index: Integer): String;
function GetComponentHandle: Pointer;

end;

➤ Listing 3

function TCompInfo.GetNamePath: String;
function TCompInfo.GetSubInfoCount: Integer;
function TCompInfo.GetSubInfo (Index: Integer): TCompInfo;

➤ Listing 4

A Word About Proxies
In the first article of this series, I explained that although Borland
supply no source code to LibIntf and although it isn’t an official part of
the VCL library, you can make use of it from your own Delphi experts
simply by adding LibIntf to the uses clause of a unit. This works because
the ‘packaged’ version of the VCL library (VCL30.DPL to be precise)
has a dummy LibIntf unit which contains abstract declarations of the
various LibIntf classes. Inside an expert, the all-important CompLib and
DelphiIDE variables get initialised with object instances that reference
the ‘real’ LibIntf code which is resident inside the IDE itself.

It’s been pointed out to me that because LibIntf is located inside
VCL30.DPL, there’s nothing to stop you putting LibIntf into your uses

clause when building an ordinary application (ie not a Delphi expert)
that uses packages. That’s certainly true, but such a scenario means
that your copy of LibIntf will no longer be ‘shared’ with the IDE, mean-
ing that the CompLib and DelphiIDE variables will remain set to zero,
which is just as it should be.

All this raises the question of whether there are any other hidden
units inside VCL30.DPL which can likewise be made use of? As it turns
out, there are! One of them is called Proxies and you can include it in
just the same way as for LibIntf. You can find the interface definition
for Proxies in the file PROXIES.INT which is located in your Delphi DOC
directory. The routines defined in this unit relate to the way in which
the IDE maintains design-time ‘proxies’ for each component that you
add to a form. For example, when you create a new form method in
the IDE, the Proxies routine CreateSubClassMethod gets called. When
you rename a form method, then the corresponding RenameSubClass-
Method gets called, and so on. Although the Proxies unit isn't docu-
mented by Borland, Ray Lischner has done an excellent job of
describing what it does in his new book Hidden Paths of Delphi
(available from the Borland User Group on 01980 630032 and your
local bookshop).

March 1998 The Delphi Magazine 33

handler is set up through a call to
GetEventValue, you should use the
same index value when calling
GetEventInfo to return the actual
type information associated with
this event. In the same way, you
can use the ClearEvent method to
clear a designated event handler
type that’s currently associated
with a component. Calling ClearE-
vent doesn’t physically delete the
event handler code, it simply
disassociates it from the
component.

But Wait: There’s More!
While investigating the inner work-
ings of the TICompInfo class, I dis-
covered that there are actually
three other TICompInfo methods
whose presence was apparently
unknown to Sergey Orlic, the
Moscow-based Borland Product
Manager who allegedly reverse-
engineered the original LibIntf
class. The declarations for these
methods are given in Listing 4.

The GetNamePath function
returns the name path for the com-
ponent associated with the TIComp-
Info interface. Under normal

circumstances, this will be exactly
the same as the component name.
If you read the Delphi on-line docu-
mentation relating to GetNamePath
(which is also a method of TPersis-
tent and TComponent) you’ll see that
its real purpose is to provide sup-
port for collections in the Object
Inspector. In the same way, the
remaining two methods are also
associated with components
which contain collections.

For most common controls, the
GetSubInfoCount method will
return 1 indicating that there are
no ‘sub-components’. However, for
components such as THeaderCon-
trol and TStatusBar, a larger value
will be returned. You can obtain a
TICompInfo interface for sub-
components by calling the GetSub-
Info method. As with the GetComp-
Info routine, the TICompInfo object
is created on your behalf and you
must free the object when you’ve
finished using it.

I intended to document the
TIModule class, but I’m fresh out of
space again. Sorry! I’ll keep this in
reserve and maybe discuss it at
some future point along with a

➤ Listing 5

detailed description of some of the
other ‘ghost’ units that haunt the
VCL30.DPL package (see the
boxout A Word About Proxies).

This month’s source code for my
LibIntf exerciser expert is given in
Listing 5. As before, it’s essentially
a ‘delta’ of the previous month’s
code in order to save space. There
are two or three other methods
that this code ‘exercises’ which
didn’t make it into my discussion.
In particular, the code shows how
to use the LibIntf methods which
show and hide a design-time form,
and enable you to specify a new
name for a form. the full source is
on this month’s disk of course.

Well, that concludes our tour of
LibIntf, I hope you’ve found it
interesting. For those who develop
Delphi add-ins, experts, property
editors and so on, I hope that, as
with CodeRush, it’s given you
some ideas for getting around limi-
tations with the official Open Tools
API. Even if you’re not developing
any Delphi add-ins, you should at
least have a greater appreciation

function TLibExTest.InitFormDesignerPage: Boolean;
var
Idx: Integer;
Str: String;
CInfo: TICompInfo;
ActiveForm: TIForm;

begin
{ Assume no active form }
Result := False;
ActiveForm := CompLib.GetActiveForm;
if ActiveForm = Nil then begin
ShowMessage(
'Can''t access this page without an active form');
Exit;

end;
{ OK - we've got an active form }
Result := True;
with ActiveForm do begin
CompCount.Caption := Format(
'Number of components on form = %d', [GetCompCount]);

Str := GetFileSystem;
if Str = '' then Str := '[Default]';
FileSystem.Caption := Format('File system = %s', [Str]);
FormName.Caption :=
Format('Name of form = %s', [GetFormName]);

Ancestor.Caption :=
Format('Name of ancestor = %s', [GetAncestorName]);

Image3.Picture.Bitmap.Handle := GetFormImage;
if GetCompCount > 0 then
Str := GetCompName (0) else Str := '--none--';

FirstCompName.Caption :=
Format('Name of first component = %s', [Str]);

TabCompCount.Caption :=
Format('Number of TabStop Components = %d',
[GetTabCompCount]);

{ Find first non-visual component, if any }
Str := '--none--';
for Idx := 0 to GetCompCount - 1 do
if GetNVComp (Idx) <> Nil then begin
Str := TComponent (GetNVComp (Idx)).Name;
break;

end;
FirstNVComp.Caption :=
Format('First non-visual component = %s', [Str]);

{ Do something to demonstrate the TICompInfo interface }
GroupBox2.Visible := GetCompCount > 0;
if GroupBox2.Visible then begin
CInfo := GetCompInfo (0);

try
CIName.Caption := TComponent(
CInfo.GetComponentHandle).Name;

CIName.Caption := CIName.Caption +
Format(' (%s)', [CInfo.GetClassName]);

CIEventCount.Caption := Format(
'%d Possible Event handlers',
[CInfo.GetEventCount]);

EventCombo.Items.Clear;
for Idx := 0 to CInfo.GetEventCount - 1 do begin
Str := CInfo.GetEventValue (Idx);
if Str <> '' then
EventCombo.Items.Add (Str);

end;
if EventCombo.Items.Count = 0 then
EventCombo.Items.Add ('--none--');

EventCombo.ItemIndex := 0;
finally
CInfo.Free;

end;
end;

end;
end;
procedure TLibExTest.HideClick(Sender: TObject);
begin
CompLib.GetActiveForm.Hide;

end;
procedure TLibExTest.ShowClick(Sender: TObject);
begin
CompLib.GetActiveForm.Show;

end;
procedure TLibExTest.NewNameClick(Sender: TObject);
var
NewName: String;

begin
with CompLib.GetActiveForm do begin
NewName := InputBox ('LibIntf Expert',
'Enter a new name for the form', GetFormName);

if (NewName <> '') and
(NewName <> GetFormName) then begin
SetFormName (NewName);
InitFormDesignerPage;

end;
end;

end;
end.

34 The Delphi Magazine Issue 31

➤ Figure 3:
The same arguments apply
to the Tab Order dialog.
Want to know how Borland
implemented it? It's basically
a judicious mixture of
GetTabCompCount and
GetTabCompInfo with a
light sprinkling of
SetTabCompOrder.

of the ‘wheels within wheels’ that
lie at the heart of the IDE.

Let me stress one last time that
you shouldn’t use LibIntf indis-
criminately. Neither LibIntf nor
the Open Tools API is documented
by Borland, but at least the
existence of the Open Tools API is
acknowledged! I strongly recom-
mend that you use LibIntf only
when absolutely necessary in
order to maximise the likelihood of
your add-in working with future
versions of the Delphi IDE.

Dave Jewell is a freelance consult-
ant/programmer and technical
journalist specialising in system-
level Windows and DOS work. He
is Technical Editor of Developers
Review which is also published by
iTec. You can contact Dave at
Dave@HexManiac.com.

	The TIForm Class
	Improving Your Image
	Beyond The Event Horizon...
	A Word About Proxies
	But Wait: There’s More!

